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Why few-shot learning?

Expensive to Annotate Data
(e.g., medical) Emerging Categories (e.g., New brands or products)

Rare Concepts (e.g., Endangered species)




Why is FSL Hard?
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» Dataset Size

Performance drops dramatically in low data regime .... thanks to overfitting.



Solutions to FSL all involve borrowing
related data from elsewhere....
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Transfer
Learning

Train a model on large-scale
source datasets
IMAGENE

Transfer the learned
representation

learn to learn tasks

Meta-Learning

K
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quickly learn

A

new task
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Target datasets

Lake, Human-level concept learning through probabilistic program induction, Science 2015;
Salman, Do Adversarially Robust ImageNet Models Transfer Better?, NeurlPS 2020. Yu, Meta-world, CoRL 2019
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Meta Learning and Learning-to-Learn

Iearn to learn tasks

quickly learn

kl newtisk
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_ Past: Shallow Learning Current: Deep Learning Future: Deep Meta Learning

Classifier Learned Learned Learned
Feature Hand-Crafted Learned Learned
Learning Algorithm  Hand-cratied Hand-crafted Learned

EG: Architecture, Hyper-
params, Optimiser, etc

Hospedales et al, Meta-Learning in Neural Networks: A Survey, IEEE T-PAMI 2021



Defining Learning-to-Learn

E )
9 - Met
a |(_U ela
"cqn'; A 2 4 Learning
2 2
S 3
5 =
g Conventional g
< Algorithm XS]
(D] S
& &
Amount of Data Amount of Tasks
* Machine Learning Definition (Mitchell, 1993): * Learning to Learn Definition (Thrun, 1998)

« Given: Task T, experience E~T, performance measure P. * Given: Tasks T from a task distribution T~D, experience of each task

* A program if performance at T wrt P improves with amount of E~T, performance measuret P. .
experience E. e A program if performance at tasks T wrt P improves

with amount of experience E and with number of tasks T.



Learning-to-Learn aka Meta-Learning

experience new tasks

X £ 4k

v XYy v Xy v Xy L xy

Inductive bias w
Learning Learnin Learning > Learning

Few-Shot Meta-Learning: Learn the inductive bias that leads to success with small training sets.

What can we (meta-)learn and transfer? Priors, representations, optimizers, hyperparameters,...



A Minimal Example of Human Meta-Learning

A regression problem to solve:
How would you regress this line?

Learned inductive bias in this example:
Choice of regression kernel 0o ®
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Probabilistic View

e Supervised Learning (from scratch). D = {(x;, y;)}
argmaxgp(0|D) = argmaxg z logp(yilx;, 0) + logp(6)
i

 If there are also related tasks Dy = {D; }: argmaxgp(0|D, Dyper)
108 P(61D, Der) = 108 | POID, 0Ip(@IDer) do

w

~ logp(6|D, ) + logp(w”|Dptr)
where w* = argmaxlogp(w|Dmer) e

\ I Task T
|

Meta-learning
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Probabilistic View

* Meta-Train: w* = argmaxlogp(w|D,,sr) = argmax,, Y., logp(w|D;)

Summarize the learning
< i i
« Meta-Test: 8* = argmaxglogp(8|D, w*) = A+ (D) @gerithm asafunction
Important #1:

Learn w so that we generalize from D" to DY° imlies this graphical model:

w* = argmaxy, ). log p(6;|D{%) °

st. 0, = A, (DE)
r/ e Task T \

Train Val

N _J




Compare:

(Meta) optimise for overfitting

w* = argmax,, Y., logp(6;|D:")
S.t.HT — Aw(D’lI,ET)

(Meta) optimise for generalisation

w* = argmax,, ).; log p(6;|D7%)

Important #2:
If the auxiliary train sets are small...
Meta-optimize for generalisation after FSL!
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Optimization View: Bilevel Optimization

Meta-Training

vx F Outer Loop:

e

Inner Loop:

- ? - ?
How to Meta-Learn? Whv Optimize? What to Meta-Learn
Generalisation . .

Second-order Gradient Bayesian Prior

.. . Accuracy + Data- :
Implicit Gradient . Architecture (NAS)

. Efficiency .
Evolution Optimiser
V.
min

(D ,Dtr)ED <«— Split each task into train & val. Aka: Query/Support

£(D"“ A(Df", »))

= A(D!", w) = argmin L(D!T; 0., )
/v 0 ’

Meta-Testing

Encapsulate training algorithm A l : How to learn?

';i Learning:

New Task Dy,

Inference:

new

= for,, (x)

= A(Dnewr ) = arg mein L(Dnew, ; Onew

)




utline

Meta-Learning: Intro & Concepts

Interlude: Some Theory
Amortized Meta-Learning

Meta-Learning in Neural Networks: A Survey

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, Amos Storkey

field of i i , has seen a dramatic rise in interest n recent years. Contrary to
conventional approaches to Al where (acke o selved fom scratch usig a fixed learning aigorithm, et learning aims to improve the

learning algorithm itself, given the exper multiple

an opportunity to tackle many

conventional challenges of deep learning, mcludmg dats snd computatlon bmﬂensd(s, as well as generalization. This survey describes

nd position it with respect to related fields,

such as transfer learning and hyperpavame(er apl\m\zahun We Ihen pmpose a Y that provides a

breakdown of the space of metarlearning methods today. We
fow-shot learning and learning. Finally, we di

pr 0 applcations and suchas

tstanding challenges avaaslamu(uvueseavcn

Index Terms—Meta-Learning, Learning-to-Learn, Few-Shot Learning, Transfer Learning, Neural Architecture Search

1 INTRODUCTION

Contemporary machine learning models are typically
trained from Scratch for a specific task using a fixed learn-
ing algorithm designed by hand. Deep learning-based ap-

roaches specifically have seen great successes in a variety
of fields [1]-{3]. However there are clear limitations [4]. For
example, successes have largely been in areas where vast
quantities of data can be collected or simulated, and where
huge compute resources are available. This excludes many
applications where data is intrinsically rare or expensive [5],

ar commmite resanrees are nmavailahla 6]

Meta-Learning vs Alternative FSL approaches

Meta-Learning & “In-context learning”

Applications
Challenges & Outlook

in multi-task scenarios where task-agnostic knowledge is

extracted from a family of tasks and used to improve learn-

ing of new tasks from that family [7], [19); and single-task

scenarios where a single problem is solved repeatedly and

improved over multiple episodes [15], [20], [21]. Successful
e v o :

ew-

shot image recognition [19], [22], unsupervised learning
[16], data efficient [23], [24] and self-directed [25] reinforce-
ment learning (RL), hyperparameter optimization [20], and
neural architecture search (NAS) [21], [26], [27].

Many perspectives on meta-learning can be found in



Few-Shot Meta-Learning: Summary

Val set
Aka: “query” Few-shot train set

N / Aka: “Support”
min 2 rmetacpra. A(DI, w))

c
‘©
s t
7 (D2, DE")eD
S * tr — . tr.
= 07 = AD{,w) = arg ménL(DT, ; 07, )
\ \ Suggests iterative gradient
Suggests amortised learner descent —based learner
3 ; ,
o Hnew = A(Dnew» ) = arg mmL(Dnew s Onews @)
]
= = fos,4,, (X7)




MAML: Context

* In non-convex optimization, the final local minima depends on the
starting point.

* Few-shot regime: Minima found likely to be poor.

.

N0,

* MAML: Can we find a starting point that leads to good
generalization accuracy, even with small training data?



Meta-Train

Model Agnostic Meta-Learning

e Setup: P

« Goal: Generalisation after few-shot learning (small D'")
* Meta representation: «w:= initial parameters 0". . : ,

* Meta optimizer: Gradient.

e => Learn an initial condition such that few-step/few- o
. . . - meta-learning
shot fine-tuning from i.c. 7~ works well. g " leaming/adaptation

VL,
%Q |
VL, oy
P
Outer Loop: 2 L(D?%; A(DE, w)) 0
(DY, pE)eD

Inner Loop: 0; = arg mein L(DIT;6,, ) = w —aVgL(DLT; 6;)
\

|
Deploy/ Assume the inner loop can be solved

ew = — avBL(DneW; new) with one (or few) gradient-descent steps
Meta-Test: if given a good initial condition




GBML Trends: / Optimizer / Meta-Params
P GBML is still expensive.

* Cost: (1) High order gradients, (2) Store compute graph for default reverse mode
differentiation|(memory proportional to number of inner steps).
\ FSL: Annoying,

Not fatal

* Huge amount of ongoing work trying to make gradient-based meta-learning faster
& more scalable:

* First order approximations
* Forward mode differentiation

* Constant memory but worsen scaling to hyperparam dimension
* Implicit Gradient

e Constant memory but require inner convergence

 Evolution
* Avoid second order gradient & constant memory, but worsen scaling to hyperparam
dimension — meta-learning

---- |earning/adaptation

* Hyper Distillation 0 VL,
* Alleviate second order gradient %ﬁz %
VE[ /,—"' 3

9’ ”’ \\\‘ *
1¥ '92



GBML Trends: Efficiency / / Meta-Params
P Meta-Learning Aspects of the Inner Loop Optimizer

Growing space of meta-parameters « to learn:

£ z
é * MAML: 6 « 07" — BVyL(0) o] = 18] %
g" e MetaSGD: 6 « — fdiag(«w)VeL(0) Elementwise learning rate: |w| = 24| g
g * Sparse MAML: 6 « 0" — BI,50VgL(6) Elementwise sparse updates: || = 2|9|§
% « MetaCurve/MetaMD: 6 « — BP(w)VgL(0) Preconditioning matrix, || = |6 +|9|2§
:;l * LEO/MMAML: 6 < g,,(Dern) — BVoL(6) Initialization network, |w| < |6 %7
g * Neural Optimizers: 8 < NN, (VgL(60),8) Neural Optimizer || < |8] or 6] « ||



GBML Trends: Efficiency / / Meta-Params
» Recap: How MAML avoids overfitting?

MAML inner loop:
61 « 0y — BVoL(Dff,

Ok < Or—1 — .BVHL(D]E;)
Reduced overfitting because:

1. We meta-learned an initial condition that
leads to good generalization.

2. We only take a small number of gradient steps K.

=> (/,, is dealt with elegantly by meta-learning, but
is still a heuristic.



GBML Trends: Efficiency /
» CAMEL: Constrained Meta-Learning

/ Meta-Params

Regularising MAML to improve few-shot reliability

« MAML: 6 «

* IMAML: 6 «

— BVgL(6)
— Ve (L(O) + All6 —

* CAMEL: 8 < project|g_

Removes a very tricky
hyperparameter!

96

< ( _.BVBL(H))

Regularize by limiting steps to K=1,2,3.

1)

1 —— CAMeL

iMAML

0

50 100

Number of inner iterations

150

200

250

But can’t meta-learn K®

Regularize by limiting steps and weight decay
But can’t (efficiently) meta-learn A ®

Regularize by constraining net update size
Can efficiently meta-learn o ©

%

— meta-learning
---- learning/adaptation



GBML Trends: Efficiency / Optimizer / Meta-Params
P Learning Other Meta-Params

meta learning of neural architectures

meta loss & meta architecture & architecture

update task weights] task leaming  :

Source Dataset

'------‘- ------- = B Layer 1
TN T @@@
B o 1 Layer 3
1 Dog Cat | '.- ;
s lEs s aaa e r ' mlu Transfer Aircraft Conv4
5 l /\/\ 9o 99

N SR S
|

X cuB VGG

el e, - ————— I Perturbation function

update meta weights of weights

] meta learning

& task architecture

compute task loss K’

-------------------------------------------------------------------

[ architecture search space ]
¥

Meta-training Meta-testing

Main network Noise generator
FC - -{ Noise

task-dependent architectures

initial meta architecture @pera

' R
Conv --{ Noise ] meta ey . L E]/ 4T )
0 - 4 / \—> ( )
@
: ; : | ———4
e Conv3x3 "= Convbx5 " MaxPool ki a ar 9,

Lee, ICLR’20, Meta Dropout: Learning to Perturb. Elsken, CVPR’20, Meta-Learning NAS for FSL



Two State of the Art Few-Shot GBML

* Unicorn-MAML

Good for classic MAML: (1) Sufficient inner loop steps, (2) care with different
role of feature extractor + classifier.

» => Beats a lot of prior SotA! e arameter ) it o opimiton sy
ey = == ()
:wl =w : :
w » : _’ Class: N
Wy =w N
* Meta-NIW
« Variational BNN solution to the canonical graphical model: @
e => Conjugate updates. No storing compute graph: Fast ©. —
e => Uniquely scales MAML up to VIT backbones! © Tain e vl

=> Excellent results on classification, regression, calibration. [ J
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Is there any theory for few-shot meta-
learning?

e Q: Can we guarantee generalization even in FSL scenario?

* Q: How can we know if the meta-train set and/or the meta-
test support set are large enough that « should generalize to
new meta-test tasks?

* Q: Can any theory meaningfully apply to deep learning?



Theory For Few-Shot Meta-Learning?

Guaranteed Test Error <= Empirical Train Error  + Deep neural net complexity -
Exponential in
-
) Lo ) 4 /710g(2d)cX 25—1 % HJ{J=1 9B Num Layers ®
E(z)[L(f(@),9)] < — > L&), i)+ < .
Num Data Norms

Standard Deep Learning Theory

Guaranteed Test Error <= Empirical Train Error + Deep neural net complexity
(Task Overfit) + (Meta Overfit)

Qi (p,T) Qz(P,‘r)

— meta-learnin
0 Iaming/adagtation Lg (HG(O) ) < Lg (HO (0) p) +
, » v\
A Instances per task N Num Tasks

Distance p allowed to move (in weight space)

Deep Meta-Learning Theory by gradient descent from initialization

Gouk, ICLR’20, Distance Based Regularisation; Stuhmer arXiv’'21, CAMelL: Constrained Adaptation for Meta-Learning
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Few-Shot Meta Learning:
Gradient vs Amortized

Val set
Aka: “query” Few-shot train set

/ / Aka: “Support”
min z Lmeta(pra. A(DE,w))
(D2%.Df")eD

Meta-train

0 = ADY", ) = arg mgnL(D{’"; 0;, )

2 3
Amortised Learning:
* Pay an up front cost for meta-learning, . ) .
but amortise it over faster learning for Suggests iterative gradient

many meta-test tasks. Here: Suggests amortised learner descent —based learner
Faster=feed-forward.

91::ew = A(Dnew» ) = arg mmL(Dnew s Onews @)
= for,., (X7)

Y E v
P "‘\

e O e
Ry ?B‘I
1

Meta-Test



Prototypical Network

* Background: Nearest-centroid classifier (NCC)

Train: Test:
1 2
cr(Sk) = A z X p(y = kl|x) < exp(—|lx — ci|*)
k (x1,yi)ESK

* Q: What part of NCC classifier says “how to learn”?

* A: Distance metric!

p(y = k|x) o exp(D,,(x, ci))




Prototypical Network

* Learning: A deep ”Prototype” per class: 4D, »): 6, =ﬁ Z . (x)
(x3,Yi)EDg

e Classify with: p(y = klx) « exp(=IIf,, (x;) — 6,1

\ : How shall we represent the inputs

/ Before measuring Euclidean distance?
« Meta-Learn by: > LDy A 0))

Dg,D.E=D.,;

%—{ CNN f ]—» {01}i=1
n« CNN  f; ]—» exp(—IIf, () — Opll)———— 12,0,0,0,0]




AML Trends: / Dyn. Feats. / Joint Inference
P Improved Distance Metrics »o = ki « exp(g, (. fu(50)

ProtoNet: Deep Embedding + Euclidean Dlstance DeepEMD: Deep Embedding + Earth Movers Distance
p(y = klx) o« exp(—Ilf,(x) — 0, lI?)

o c
J
(@)
P,
Conv-4/ — —
ResNet

fo(z)— ke

Input Images Backbone Dynamic Classifier




AML Trends: Metrics /

Inspiration: Meta-Dataset benchmark
P Distribution shift makes pre-trained features sub-optimal

MEES BREE TEEZ N TE NN
O llll ELLQW?/II Iﬂ

HW‘*I Hl QAQIH ﬁﬂ\ NEEFDR
(a) ImageNet (b) Omniglot (c) Aircraft (d) Birds (e) DTD
D SEAN COEEE BEES #sE
ESNE GEDND CHEE (B0 sl
BENEGsEm HREN §E S8R
EESEMNCEEE EEEE BOE.. BEEL

(f) Quick Draw (h) VGG Flower (i) Traffic Signs (j) Mscoco

|25

(g) Fungi

CNAPS Adaptive Feature Extractor

fo (%)

fo (¥}

block 1 block 2 block 1

1 1 I I
(2} [ B;I (e w,>) [ /ml (Rt rabsl] |

4
w, Sel Vf set v yjset | % v V) set v
Encoder ! Encoder 7 Encoder (4
x g Set Encoder

Pr(D7)

/ Joint Inf.
P Feature Extractor Conditioned on Support Set

Universal Representation Transformer

Universal

Representations

Backbones
._:_.; {r;}
. Backbones
{r;}

—— Inferring adapted representation for task ——

Waxcap

i ‘ Backbo nes

!}—E’E

Backbones E
{r:}
Py agarie - Average [
- Backbones E
{r;}
Fly agaric

r(Sy)

Scaled
Dot-product
Attention

Scaled
Dot-product
Attention

@y,) @2 @3 G4y
Attention scores
(Waxcap)

Attention scores
(Fly agaric)

@12 022 ¥32 042

Attention scores
for task

_’ q G A a

Sample representation transformed by URT



AML Trends: Metrics / Dyn. Feats. / Joint Inference
P Reason jointly about the query + supports.

ENCODER
Self-
X, vy attn¢
\\ R
_L et
X Yo | A ser
attnw
A
—

Neural Processes

>,
> I

> I3

Query

DECODER

N m,

\
Cross- 5
attention X
Pead Z

/

Deterministic
Path

Latent
Path

Mean

Recently evaluated as SotA for the
less studied few-shot regression!
+ Good at uncertainty estimation.

Garnelo, ICML 18, Conditional Neural Processes.
Ye, CVPR’20, Few-shot learning ... with set-to-set functions. Gao, CVPR’22, What matters for meta-learning regression tasks?

FEAT

o 3 =) s P% ) |Traln Instance |
ERE DS BEE G g
R |

Cow ] [ow ] [Cow] [ow ] |ai~||cv'm||c?m||c»3~|:I
\

E @ @ % @ @ E @ I Test Instance l
I/ Embeading | Set-to-Set Function I K I e |
P |
’ ’ .
5 S | Task Agnostic |
7 L i Embedding |
Soft Nearest ®— il Soft Nearest P d | (s [
Neighbor Neighbor | Task Specific |
Classification — Classification y .
Scores Scores | Embedding |
(a) Instance Embedding (b) Embedding Adaptation I
L
Context Target
- - \ : -

e
-

Distractor

-

Q\ 5
=Bl & B =
E n E

Kim, ICLR’19, Attentive neural processes

ShapeNet1D

ShapeNet2D



A State of the Art Amortised FSL

Concatenate
into single

Task Input Task Output  Query
Example Example

Edge detection

Inpainting Segmentation Style transfer
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An ongoing debate....

Train a model

on large-scale

source datasets

IMAGENET

Transfer the learned

reﬁresentation

-

Is meta-learning worth it, or transfer
learning is as good or better?

~

J

Target datasets

Iearn to learn tasks

"w

O?(-)J

quickly learn
new task

_.\;{

-



Is meta-learning useful for few-shot
recognition:

e ANIL [ICLR-20]: Meta-test adaptation in MAML-like methods doesn’t
help. They just learn a good feature. Then you can use NCC.

e Unravelling [ICML-20]: Meta-training in MetaOptNet/R2D2 learns a
good feature (MAML doesn’t). But this can be replicated in classical
training with an appropriate extra loss term.

 CloserLook [ICLR-19], SimpleShot [arXiv-19], Manifold Charting
[WACV-20], Rethinking FSL [ECCV’20]: No. Pre-train followed by
linear/NCC works well.

e FT [ICLR’22], TSA [CVPR’22], PMF [CVPR’22], FiT [ICLR’23]: No, pre-
train followed by fine-tuning is all you need.



Is meta-learning useful for few-shot
recognition:

e BOIL [ICLR-21]: Contrary to the claim of ANIL, representation adaptation of
MAML does help.

e Unicorn [ICLR-22]: Properly tuned MAML works great.

....Which group to believe?....

» |dea: Develop meta-learners which are agnostic to choice of feature
extractor / feature extractor initialization.

P If they help, meta-learning is at least complementary to transfer learning.

 MetaQDA [ICCV-21]: Yes. Meta-learning is complementary to pre-trained
features in fixed feature condition!

. NFTS?[aeriv—23]: Yes. Meta-learning can answer the question "how to fine-
tune?”!



Shallow Bayesian Meta-Learning

Setup:

Given a fixed pre-trained feature f(x) and target dataset D = {f (x), y}. How?

Meta-learn shallow classifier g, (+), so that g, (f (x)) performs well Learn a Bayesian prior on
even with few training examples for g, .

. Support Set Prior over classifier
0 ;23;::2?] llarzlference parameters Quadratic Discriminant Analysis ; Bayesian QDA
< e — p(1x,0) < exp ((x = 11,) 2y (x — 1)
2 p(0|Ds, w) x p(Ds|Np(0|w) Oy = 1y, Ty

Everything is tractable if p(¢|w) is normal
Recognize final query set by integrating out parameters.| ~ inverse wishart!

p(DglDs ) = J | [ Gyl poID, 0)d

Episodic training of the parameter prior

minEDSDq —log(Dq|DS; )

Meta-Learning Inference



Shallow Bayesian Meta-Learning with
MetaQDA %

: Recognize query set by Bayesian inference on Gaussians.
Integrate out their unknown means & covariances:

p(Dq|Ds, w) = [ p(x,y16)p(6]Ds, w)d6 ’;@'x' 9; o exp (x = y) 2, (x ~ 1))
= U,

V' Closed form solution for classifier posterior given prior and support set
(By careful choice of inverse-Wishart conjugate prior p(8|w))

v/ Closed form solution for inference of query given support + prior.
(Approximate and v. fast, or exact and fast via student-t posterior)

v Train the optimal inverse-Wishart prior w by gradient during meta-train.

v Accurate: More powerful than a linear classifier, but avoids overfitting thanks to meta-learned prior!
EG: +4% over MetaOptNet.
v Well calibrated probabilities..




Neural Fine-Tuning Search

Evolutionary search o ) c
Freeze & i «: Binary adaptation mas

(=] g

adapters min § L(D;-)a; A(Dlt_r, w))
Recent SotA on W
—_— va ptr
Meta-Dataset: Selective (DT Dr )ED
FLUTE (ICMU'21) ¢ : . _
PMF (CvPR'22)  Fine-tuning 0" = ADI, ) = arg min L(Df}r ;0,0)
FiT (ICLR'23) ooyl
TSA (CVPR’22)

Support St'at Query Set
Key Idea: . “ ¥ o ()
Careful adaptation of @. fo.0.0 S—
pre-trained features L A | A . v

(d) Task adaptation with attached ’é Y & ’é

adapters learned from support set

WEEE EEED TS B Adapt with ta i
- - r - - pt with task-specific
Y A EEEW B - M WP ! parameters in meta-testing
el ]| #ORE EEE™ EETE
FE L % i =R BRINIEFDR
(a) ImageNet (b) Omniglot () Aircraft (d) Birds (e) DTD
EEEN DEEE AEEC NS , =
ESNE QET0 CHEE (IEar] masie gh¥' e gt e
N LtEEEaE nLe SN
== o > (5 & . . . . .
Oukome @ 0GORm O Tuksms O NSO [ Eustratiadis, arXiv’'23, Neural Fine Tuning Search ]




Neural Fine-Tuning Search: Results

Meta-Dataset: Multi Domain

85

80

. I
70

RN18

VIT

B FT Baseline TSA NFTS

Evolutionary search

i

min

(b2, 5Fr)en

: Binary adaptation mask

L(D7% A(D7", »))

0 = ADI",w) = argmeinL(D%,’”; 0, )

Fitness (Accuracy) of each fine-tuning mask

o &

Ced

Generation 1

Generation 5

Generation 15

Final Masks

g1 92 93 9+ 95 Y 97 gs 99 Yo G11 912 913 J14 915 916

(b) Top 3 performing paths subject to diversity constraint.



Is meta-learning useful for few-shot
recognition? Conclusion:

* MetaQDA [ICCV-21]: Yes. Meta-learning a prior on the classifier
layer, is complementary to any choice of fixed feature extractor!

 NFTS [arXiv-23]: Yes. Meta-learning "how to fine-tune?” is
complementary to any choice of initial feature extractor!
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Classic ICL is emergent....
....But explicit meta-learning seems to be better

Training on vast number of prior sentence completions.
.... Leads to emergent in-context learning.

Demonstrations
Circulation revenue has increased by 5% in Finland. \n [ Positive L. .
Panostaja did not disclose the purchase price. \n\ Neutral Very reminiscent of our amortised meta-learner...

Paying off the national debt will be extremely painful.  \n

The acquisition will have an immediate positive impact. \n min E L (D%ﬂa, A (Dgr’ (1)) )
w

Test input
(p?*,DfM)eD

Prediction = Positive

Actually training as meta-learning substantially improves

emergent ICL (GPT2) in head-to-head comparison.
[ Min, Meta ICL, ACL'22 ]

Brown, NeurlPS’20, Language models are few-shot learners. Min, ACL'22, MetalCL: Learning to Learn In Context



Leveraging (emergent) ICL for few-shot vision...

Setup:

1. Align vision encoder & language decoder by training a captioning objective.
2. Exploit language model’s emergent ability to perform amortised in-context learning.

A small red boat on the water
t t t t ot v
f 0 Language Model

Self Attention Layers

# Frozen

b ottt T |1
COCCOCOCaC

[ 1
1CJ

[ )
I N A A A

1

3=

A small red boat on

the water

Vs visi 90
Lt N Eopedder. % Frozen
F 1 1t 1 1 1 1 1

This person is
like ©.

This was invented
by Zacharias
Janssen.

With one of these I
can drive around a
o track, overtaking

- other cars and taking
corners at speed

This person is
like @.

This was invented by
Thomas Edison.

With one of these I can

fly across the sky to
somewhere on the other
side of the world

This person
is like

This was
invented by

take off from a city and \',

~~ With one of

g ‘ these I can
h J

Model Completion

@. <E0S>

Model Completion

the Wright
brothers. <E0S>

Model Completion

break into a secure

~ building, unlock the door
~| and walk right in <EOS>



Leveraging (meta) ICL for few-shot vision...

fg Meta Mapper &

7 visual prefix ( } M Setup: Align vision encoder & language decoder
lDDDD l by training a “meta mapper”.
- N 1. Meta-Train: Explicitly learn mapper
i e Fresn initialization many episodes (CF: MAML).
Vo 94y Text embedder w .
Th‘d)‘ I: “ . 2. Meta-Test: Fine-tune mapper on support set
is is a golden

s This is a golden retriever. and Infer query Set.

& output: text
input: image

encoding decoding
Meta-training Inference (Meta-test)
iy D support set T D support set Tin1 Dy support set : DI support set
way 1shot 1 way 2 shot 1 way 1shot1 way 2 shot 1 way 1shot 1 way 2 shot 1 way 1shot 1 way 2 shot 1
: - e e e -
e P . S A person standing in A plate of fruit . G o
A man riding on the  Girl with a yellow shirt A bowl of bread A man riding an ¢ . i n . )
back of a motorcycle.  holding a small cat. laid on a table. elephant in a river. SEIEACRENG  IEC e Ehisls b golden This is a cuirass,
surfboard. and apples. retriever.

f(? 9; 1 .f0 0; f€ 9;— 1 f0 g e

Meta-learner

parameters
Vgl Vol : Model completion:
fo' = .fg’ : fg’ . fg* A: Golden retriever.
i-1 meta update i meta update i+1 .
Learner 4 4 A .
|
ts
Ti=1 D8 query set T: DS query set Tor1 4 Diy query set . Dls query sample
way 1shot1 way 2 shot k way 1shot1 way 2 shot k way 1shot 1 way 2 shot k . _ . .

a2} . . =
. . - A green bowl features N Atable topped with A surfer with a paddle
| An elephant is she
A_ little kitten is stuffed 22;?:52'::;:9': snacks and fresh standing irF:a busy city. oranges and a bowl of  catches a wave. . Q: This is a?
into a woman's purse. railing, fruit. salad.

Najdenkoska, ICLR’23, Meta Learning to Bridge Vision and Language Models for Multimodal Few-Shot Learning :
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Meta Audio ~/

A Few-Shot Audio Classification Benchmark

Dovery

ST PR T
GHNEEQ [T
LG0T PR TS

Heggan, ICANN’22, MetaAudio: A Few-Shot Audio Classification Benchmark
https://cheggan.github.io/posts/2022/04/MetaAudio_blog/



MetaAudio: Results

* Modern gradient-based few-shot learners (meta-curvature) are in

the lead. Amortised learners are behind.

* (Unlike vision).

» Supervised pre-training is far-behind.
* => Don’t overfit your conclusions to popular benchmarks!

Dataset
ESC-50
NSynth
FSDKaggle18
VoxCeleb1
BirdCLEF 2020 (Pruned)

Avg Algorithm Rank

FO-MAML

74.66 + 0.42

93.85 + 0.24

43.45 + 0.46

60.89 + 0.45

56.26 + 0.45

2.4

FO-Meta-Curvature

76.17 = 0.41

96.47 £ 0.19

43.18 + 0.45

63.85 + 0.44

61.34 + 0.46

1.2

ProtoNets

68.83 + 0.38

95.23 + 0.19

39.44 + 0.44

59.64 + 0.44

56.11 + 0.46

3.8

SimpleShot CL2N

68.82 + 0.39

90.04 + 0.27

42.03 + 0.42

48.50 + 0.42

57.66 + 0.43

4.0

Meta_baseline
71.72 + 0.38
90.74 + 0.25
40.27 + 0.44
55.54 + 0.42
57.28 + 0.41

3.6



Comms is trending toward DL...

JPEG/H264 JPEG/H264

JSCC
Decoder
NN

Encoder
NN

Decoding Error Rate

Standard

FerD—ma

[ Kim et al; Deepcode..., NeurlPS’18; Li et al, A Channel Coding Benchmark for Meta-Learning, NeurlPS'21 ]

Block Ei Rate
| ——
g : g




Neural Channel Coding: Challenge
P Solution: Meta-learning

e Distribution shift between train and test ®
e => Performance drop!

Train Test
* Meta-Learning: Few-shot adaptation to distribution shift.

» “Few-shot autoencoder adaptation
* Meta-coding benchmark:

« / Controllable task complexity. v Controllable train-test distribution
shift. v/ Controllable task size.

* Interesting results. EG: Meta Curvature is also very strong.



Video Quality Comparison

Standard Convolutional Viterbi Code

Adaptive Transformer Neural Code



Prediction

Meta-Omnium

* Mainstream meta-learning (meta-dataset, FS1K, etc):

c ® ?(ingle task. Rewards over-engineered solutions to each
task.

® Single task. May not require feature adaptation.

@ Single task only.

® Rewards standard pre-trained features.

® Meta-dataset is too heavy.

® Unclear HPO protocol. Rewards benchmark hacking.

Transfer

In-Distribution Evaluation

Meta Omnium

Keypoints

* Meta-Omnium:  Seamentaten

» © Multi-task. Rewards general purpose meta-learning. GER GER R GF G GE

. . | | | |
e © Multi-task. Feature adaptation rewarded. wea- | | wea [ | | | | | | ! |
. . . . rain rain | | | |
* © Provides multi-task vs single task comparison. 74 [ D L G S B T R R I
« © Rewards in-benchmark meta-learning. e | 1o | Tolio| 1o o]
. . .. . ‘g eta- F--1 Meta- | Meta- ---4 Meta- | Meta- ---4 Meta-
« © Light enough for universities! (3GB, 3h-1080Ti) HIRER AR i | i | T i | T i

b4 p—

¢ © Unclear HPO protocol. Rewards good research. B B B
~m: R B B B
Test Test l | : | : | : |
-_— \__,l \___,l \__/l \__Jl

https://edi-meta-learning.github.io/meta-omnium/ —
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Challenges & Outlook N

 Multi-modal task distributions

 Meta-train > Meta-test distribution shift

* GBML vs Amortized (Efficiency vs Flexibility)
« GBML: More novel choice of meta-parameters

e Better Benchmarks

* Integration with FMs

e Calibration

* Meta-Learning Beyond classification (later session)

nnnnnnnnnnnnnnnnnnnnnnn
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Thank You! — Questions?
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uuuuuuuuuuuuuuuuuuuuu

PPPPPPPP



